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Fast dynamo action in a chaotic time-periodic flow is investigated. Chaotic motion 
is created by perturbing a spatially periodic array of helical cells similar to Roberts’ 
cells, leading to an identifiable stretch-fold-shear fast dynamo mechanism. Using 
the stochastic Wiener bundle method to treat diffusion exactly, numerical results are 
presented suggesting fast dynamo action. A new numerical method for modelling the 
role of small magnetic diffusivity is introduced and results are compared with those 
calculated using the Wiener bundle method. Implications for the role of diffusion in 
the fast dynamo process are investigated. Finally the relation of the new method to 
a previously used ‘flux growth’ method are discussed. 

1. Introduction 
It has been known for many years that the sun has an active magnetic field. 

Despite the fact that the age of the sun has not yet reached an ohmic decay time, it 
is widely believed that the motions of conducting fluid in the solar interior are 
responsible for the vigour and oscillatory nature of its magnetic phenomena. Growth 
and maintenance of a magnetic field by fluid process is called dynamo action. In the 
case of the sun characteristic field evolution times involved are not on the slow 
diffusive timescale but on rapid advective ones (such as those associated with 
convective eddies). Such dynamos are called fast (Vainshtein & Zeldovich 1972). In  
fact the implicit use of fast dynamo action is common in models of astrophysical 
dynamos because many such models build in magnetic field evolution on advective 
timescales by choosing an alpha effect (the regenerative mechanism for a poloidal 
field) independent of diffusivity (see e.g. Roberts & Soward 1992 and references 
therein). This is despite the fact that the existing theory on which the alpha effect 
is based relies directly on diffusivity. Similar remarks apply to the theory of 
turbulent diffusivity. Thus it is important to verify the existence of fast dynamos 
and understand how they function. One area of recent study is chaotic fast dynamo 
action (for example Bayly & Childress 1988, 1989; Finn & Ott 1988; Finn et al. 1989, 
1991 ; Gilbert 1991, 1992). Chaotic systems are of interest in dynamo theory for their 
stretching properties which are conducive to magnetic field growth. 

By combining Maxwell’s equations (but following the standard MHD practice of 
omitting the displacement current aE/at)  and Ohm’s law, it is possible to derive the 
magnetic induction equation 

(1) 
i3B 
- + u . V B =  B.Vu+R;’V2B, V . B = O ,  
at 
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where R, = U L / p  = l ~ v / l & f p  and 7 is the magnetic diffusivity. The kinematic 
approximation, made use of throughout this paper, consists of prescribing a velocity 
field u such that V - u = 0, making (1) a linear equation for B. If, given u and smooth 
initial conditions BJx) = B(x,O), the magnitude of the solution B of equation ( 1 )  
exhibits exponential growth a t  a rate p(R,) > 0 for some R, then u is a kinematic 
dynamo. If, in addition, 

then in some sense the growth is independent of diffusion and u is called a kinematic 
fast dynamo. Of course, the kinematic approximation ignores coupling between B 
and u. I n  the fully nonlinear problem a strong magnetic field would, through the 
Lorentz force J x B, eventually alter u in such a way as to  halt growth. This aspect 
of the dynamo problem will not be considered here. 

By setting R, = a, ( 1 )  reduces formally to 

This equation has the well-known Cauchy solution 

B(x(u, t )  t )  = J(x,  t )  B(u, 0 )  

where x is the Lagrangian coordinate defined by 

x(a,O) = a 

and J(x, t )  = ax/aa is the Jacobian of the flow u. For a given trajectory x(a, t )  can be 
calculated from the equation 

( 5 )  
d 
dt 
- J(x(u, t ) ,  t )  = V U ( X ( U , ~ ) ,  t )  *J(x(u, t ) ,  t ) .  

Then (4) says that the magnetic field B(x(a,T) ,T)  can be found by following the 
particle x backwards in time t o  t = 0, picking up the initial condition B(a,O), and 
bringing it forward to  time t = T using the Jacobian of the particle path of x .  I n  order 
for a field vector at coordinate x to grow exponentially, J ( x , t )  must have an 
exponentially growing eigenvalue. If, furthermore, J has an exponentially growing 
eigenvalue over a region of positive volume then the magnetic energy IBI2 d V will 
grow exponentially. As soon as R, < 00, (4) is not the solution of (1) and this 
observation no longer holds. Still it suggests that chaotic flows may be good 
candidates for fast dynamos (see Amol’d et al. 1981 ; Bayly 1986). On the other hand 
V . u  = 0 implies that det ( J )  = 1 so that if J has an exponentially increasing 
eigenvalue, it must also have an exponentially decreasing one. Thus a t  R, = co the 
exponential stretching of magnetic field by a chaotic flow will be accompanied in 
general by exponential decrease in the scale of field structure. In  a finite volume this 
effect, combined with the folding that results by necessity from stretching, produces 
complicated structures. Intuitively, one can then expect that  for large but finite R ,  
extensive field dissipation will occur as fine scales are smoothed so that the growth 
rate of magnetic energy could be much smaller for R ,  < co than for R, = co. 
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FIGURE 1. A periodic block consisting of a unit strength field in the positive x-direction (grey) and 
a unit strength field in the negative x-direction (black) going through the stretch-fold-shear 
motion. (a) Stretch: the cube is stretched to double its length in the x-direction and contracted to 
half its length in the y-direction ; magnetic field strength is doubled. (b) Fold : the stretched cube 
is cut and one half is folded over the top of the other. ( c )  Shear: linear shear proportional to y is 
applied in the z-direction ; the field in the centre of the cube points predominantly in the negative 
x-direction while the field on the ends points predominantly in the positive x-direction. 

Thus a chaotic fast dynamo mechanism must avoid the excessive field cancellation 
that can result from a cascade to small scales. Also, in the spirit of fast dynamos, it 
is desirable that magnetic structures should occur on large scales independent of the 
diffusion length. Hence a fast dynamo should exhibit a sort of kinematic inverse 
cascade. One model with both these properties is the Bayly & Childress (1988, 1989) 
stretch-fold-shear map. The map, based on observations of Soward (1987), has also 
received the attentions of Finn et al. (1989, 1991). It consists of three basic motions 
(figure 1 )  : a stretch that doubles field strength, a fold necessary to fit the field back 
into the original domain, and a shear which brings like-signed fields together and 
causes large-scale magnetic structures to emerge. These motions can be thought of 
as providing an alpha effect (together with a rotation) by pulling out and twisting 
magnetic field into loops. 

The principal aim of this paper, then, is to present a representative time-periodic 
chaotic flow containing a stretch-fold-shear mechanism as a candidate for being a 
fast dynamo. Supporting numerical evidence will be offered using three methods : an 
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FIQURE 2. Representation of the (2, y)-plane of the unperturbed helical cell flow. Solid lines form 
boundaries between helical cells and dashed lines form boundaries between matched hyperbolic 
corners. The cells alternate between right-handed helical motion in the positive z-direction (+ ) and 
right-handed helical motion in the negative z-direction ( - ). 

exact method using Brownian motion called the Wiener bundle method, an 
approximation of the Wiener bundle method using shadowing theory called the 
Gaussian averaging method, and an estimating technique used in previous fast 
dynamo studies called the flux growth method. Further, the role of diffusion in the 
chaotic fast dynamo process will be carefully examined. Because of the difficulty 
created by the presence of complicated fine-scale structure, previous studies of 
chaotic systems have, typically, considered special situations where diffusion can be 
easily handled or have made use of intuitively attractive but mathematically non- 
rigorous models of diffusion. A second aim of this paper, then, will be to provide some 
unification to the disparate viewpoints of the role of diffusion in fast dynamos. 

2. The chaotic helical cell flow 
The velocity field u to be tested for the fast dynamo property consists of an array 

of helical cells, similar to Roberts’ cells (Roberts 1972), perturbed periodically in 
time. These helical cells are constructed by piecewise matching of two-dimensional 
hyperbolic corner flows at  points (n, m, z )  together with streamwise constant motion 
in the z-direction. The unperturbed velocity field is independent of z and is defined 
by u*(x, Y) = (u@, y), d x ,  y), w(x, y)), where 

u(x, y) = ( -  l)n+m+l(x-n),  

v(x,y) = ( - - l )n+m(y - -m) ,  

w(x, y) = ( -  l)n+m+la(x- n)  (y-m), 

for n - 0 . 5 < x < n + 0 . 5 ,  m - 0 0 . 5 < y < m + 0 . 5 ,  n and m integers (figure 2). One 
periodicity section of the motion consists of four cells. Note that this velocity field 
is only piecewise smooth. Calling the (x,y)-plane the horizontal one, across the 
matching boundaries (dashed lines in figure 2) the horizontal normal velocity is 
continuous but the horizontal parallel velocity is not. Thus vortex sheets are formed. 
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FIGURE 3. Projection onto the z = 0 plane of one periodicity section of the flow. 9OOO particles along 
the unstable manifold of a hyperbolic point in a main chaotic region were released for a long period 
of time, filling the region. Vertical separatrices do not break so no particles cross the z = 0 plane. 

As will soon be apparent, this form of u* is chosen, despite the vortex sheets, for 
its ease of use. Effects of the discontinuities on dynamo calculations will be discussed 
later. Still it should be noted here that the discontinuities could be smoothed away 
(the Roberts’ cell velocity field is an example of such a smoothing), and the author 
does not feel that this smoothing would have an important qualitative effect on the 
results. Admittedly there is no rigorous justification for this view. In  certain previous 
studies, non-smooth velocity fields have played a critical and easily identifiable role 
in allowing fast dynamo action in non-chaotic flows (Soward 1987; Gilbert 1988). 
Here the discontinuity in the velocity field is present to facilitate computation and 
has no apparent direct role in assisting dynamo action. The Jacobian matrices 
generated by the flow may be particularly revealing in this regard - as will be 
demonstrated shortly, these matrices play the central role in the solution of the 
magnetic induction equation. In both the Soward and Gilbert fast dynamos, non- 
smoothness of the velocity field results in singular Jacobian matrices whereas here 
the Jacobian matrices will be seen to remain well-behaved despite the discontinuity 
in u. 

In  order to produce chaotic regions the velocity field u = u*+flt)  is considered, 
whereflt ) = (0, esint, 0) for E small. The perturbation breaks y = m separatrices (but 
not x = n ones) leading to a chaotic web in which some fluid particles are free to 
wander in the y-direction (figure 3). The open areas surrounded by the chaotic web 
are regions containing a mixture of regular and chaotic motion. These additional 
regions are presumed to be at  most weakly stretching, and will not be considered. It 
is assumed that the region of strongest stretching and magnetic field growth is the 
main chaotic channel located in the area of the unperturbed separatrices. 

The reasoning for considering a flow that is only piecewise smooth is apparent ; the 
velocity field u is integrable up to the solution of a transcendental equation for the 
transit time through certain corners. Within a corner section of the flow the resulting 
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exact particle paths are given, for n-0.5 < xo < n+0.5 and m-0.5 < yo < m+0.5, 
by 

x(to+t) = n+E0ekt ,  (6) 

(7) 

(8) 

where To = xo - n, go = yo - m + O.%( T sin to - cos to) ,  and to is the initial time. The top 
sign is used for n +m odd and the bottom one for n + m even. Points in corner sections 
with n+m odd (even) will flow above the corner for go positive and below for go 
negative in forward (backward) time. 

y ( t o + t )  = m+g0eTt+$(  f sin(t+t,)+cos(t+t,)), 

z(t0 + t ) = (zo f $ ~ E E ~  cos t o )  f az0( yo - m) t & ! ~ E E ~  eTt cos ( t  + to ) ,  

3. The chaotic helical flow and the standard map 
It would be reassuring to check that, despite its non-smoothness, the chaotic 

helical cell flow is in some sense representative of a wide class of chaotic flows. This 
is demonstrated by relating the trajectory topology of the chaotic helical cell flow to 
the standard map, a canonical example (see Lichtenberg &, Lieberman 1983). To do 
this consider a fluid particle with the (x,y)-coordinates ( 0 . 5 , ~ )  at initial time to for 
some m- 0.5 < y < m + 0.5. As the separatrices x = 0 and x = 1 are not broken by the 
perturbation, the particle must cross the line x = 0.5 again a t  a future time 
th = to+2T for some T. Using (6) and (7 ) ,  a t  ti the fluid particle will have (z,y)- 
coordinates (0.5,y’), where 

y’ = m+ K +  [ -$K ++( - sin (T+ t o )  - cos (T+ t o ) ) ]  e-T +$(sin th + cos th),  

K = go/lYol 9 

and T, the time required to traverse each corner, is given by the solution of the 
transcendental equation 

= Igol eT + ~ K E (  -sin (T+to) + cos (T+ t o ) ) .  

Ignoring the z motion, the line x = 0.5 can be regarded as a Poincare section. Then, 
as long as go + 0, the model flow can be taken as a mapping of go and to from section 
to section (figure 4) given by 

&, = ( -$K + &( -sin (T+ to )  - cos (T+ t o ) ) )  e-T + E sin (ti), 
t i  = t0+2T (mod2x), 

where the integer part m of go has been removed by assuming that go is periodic 
(go = 0.5 is identified with go = -0.5). To this point all calculations are exact. Now, 
approximating T to first order in E as T,  = -In 12g01 the map becomes 

g; = -go-El yol - (cos (To + t h )  +sin (T, + t h ) )  + c sin th,  

th = to-21n12go~ (mod27~). (10) 

Assuming yo is in the O(e)  chaotic region near the old separatrices, then the quantity 
c1tjo1 ( c o s ( ~ + t ~ ) + s i n ( T , + t ~ ) )  is O ( 8 ) .  Furthermore, as the exact map can be shown 
t o  be area-preserving, it is desirable that the approximate one be area-preserving as 
well in order to avoid qualitatively different properties such as sinks and sources. 
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FIGURE 4. Schematic representation of the two-dimensional helical flow map. A particle path is 
followed as it wanders in the y-direction. Each time it passes a Poincak section placed at x = 0.5, 
its time and y position are noted. 

This can be achieved by dropping the higher-order term, a justifiable action as the 
approximate map is only correct to O(s)  anyway. Then (9), (10) become 

$, = -go+esintk 

t ;  = t0-21n12~0~ (mod27~). 

This map is closely related to the standard map. The only important difference is 
that it is orientation-reversing because material points cross the Poincard section 
2 = 0.5 alternately from the left and from the right. The relation to the standard map, 
however, is not surprising as the standard map can typically be found in situations 
where separatrices are broken by time-periodic perturbations The streamline 
topology of the chaotic helical flow may thus also be typical of such systems. For this 
reason the author believes that fast dynamo results for the perturbed helical cell flow 
may be qualitatively similar to those for a large class of chaotic flows. 

4. The flow Jacobian 
In order to solve the magnetic induction equation (1) it will be necessary 

to calculate the Jacobians along flow trajectories. Within a section of the flow 
n-0.5 < x < n+0.5, m-0.5 < y 6 m+0.5, this is straightforward. Using (6), (7), 
and (8) the Jacobians are 

where g(zoflo,to,t) = T O . ~ s c o s t o ~ a ( y o - m ) t f O . k e F t c o s ( t + t o ) .  The top sign 
applies for n + m  odd, the bottom for n + m  even. 

However, across the matching boundaries, the streamlines have corners and hence 
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J is not continuous. To calculate the change in J across the boundary it is necessary 
to  compare the action of the flow on two nearby points (xo, yo, zo) and 

( ~ o + ~ ~ o , y o + ~ y o , ~ o + ~ ~ o )  

as they cross from one corner region to another. Then by constructing the quantities 
A[/AC0, [ = x, y, z, C0 = xo, yo, zo, and taking the limit Axo, Ayo, Azo + 0 it is possible 
to calculate the jump Jacobians 

0 1  

1 

for trajectories crossing into corner regions with n+m odd and n + m  even 
respectively. These shear matrices result from the corners formed on the streamlines 
crossing these discontinuities. The top and bottom signs are for trajectories moving 
in the negative and positive x-directions respectively in the case of J,, and for 
trajectories moving in the negative and positive y-directions respectively in the case 
of J,. 

5. The dynamo mechanism 
An interesting property of the perturbed cellular flow in particular and of many 

three-dimensional flows with broken separatrices in general is that they contain an 
easily identifiable mechanism for fast dynamo action, namely the stretch-fold-shear 
mechanism. To see this, consider the hyperbolic fixed points (n ,  m)  of the unperturbed 
flow. These become hyperbolic periodic points 

(n,  m+O.k [  f sin ( t + t o )  + cos ( t + t o ) ] )  

after adding the perturbation. The periodic points with n + m  odd are out of phase 
with the ones with n + m even. Fluid particles leaving periodic points with n + m odd 
will in general no longer asymptote to periodic points with n + m even. Thus the old 
horizontal separatrices are broken and a stretch-fold action results from broken 
separatrices folding up against hyperbolic points in the (x, y)-plane (shown 
schematically in figure 5 ) ,  well-known events in chaotic systems. Shearing is 
provided by the differential velocity in the z-direction. This kind of stretching and 
folding is closely associated with transverse homoclinic and heteroclinic points and 
thus with chaos (see e.g. Guckenheimer & Holmes 1983). 

The stretch-fold-shear map and the chaotic helical cell flow themselves are 
exceptional time-dependent chaotic systems in that they have a Liapunov exponent 
equal to zero (corresponding to a Liapunov vector pointing in the z-direction in both 
cases). The reasons for this degeneracy are to allow the problem to be reduced to two 
dimensions and to make the dynamo mechanism more understandable. A zero 
Liapunov exponent is not necessary for the stretch-fold-shear mechanism, however. 
All that  is needed are a principal stretching direction, a principal contracting 
direction, and a third direction in which shearing occurs. 
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FIQURE 5. Schematic projection of the unstable manifolds of four hyperbolic points in the (2, y)- 
plane. Solid lines are unstable manifolds of the perturbed flow, dotted lines are horizontal 
separatrices of the unperturbed flow that are broken by the perturbation. 

6. Solving the induction equation 
As previously mentioned, when R, = 00 the magnetic induction equation (1) can 

be reduced to ODE’s by the Cauchy solution. The Cauchy solution no longer holds 
when R, < co . However, using Brownian motion theory, it is still possible to reduce 
equation (1)  to the solution of ODE’s. The method involves averaging the Cauchy 
solution over a set of noisy orbits called a Wiener bundle. This method has been made 
use of by Chorin (1973), Kraichnan (1976), and Drummond, Duane & Horgan (1984) 
in turbulence studies, and more recently has been suggested for fast dynamos 
(Molchanov, Ruzmaikin & Sokolov 1985; Gilbert & Childress 1990). The Wiener 
bundle is made up of Wiener trajectories defined by 

dx = udtf1/2R$dw, (11) 

where w ( t )  is a (Gaussian) random process with independent increments (see e.g. 
McKean 1969) such that 

(w,(t )> = 0, (w& 1 W,(t 1) = 4, t .  (12) 

B(x, t )  = (J(x,a,,X,t)B(a,,O)), (13) 

The Wiener bundle solution to (1)  is given by 

where the average is over all Wiener trajectories X(s)  starting at a random point 
X(0)  = a, and ending at  a given (non-random) point X ( t )  = x. Note the close relation 
to the Green’s function solution; the solution is calculated pointwise by adding the 
contributions from each possible initial point. See also Vishik (1989) for the use of 
Green’s function techniques in fast dynamo studies. 
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The Weiner bundle solution differs from the Cauchy solution in that it averages the 
contribution from many arriving particles rather than only one. J is calculated as 
before using ( 5 ) .  Note however the subtle point that the Jacobian J is calculated 
using the velocity field u without noise but over the path of the noisy Wiener 
trajectory. In this way the Wiener bundle solution ‘unfreezes’ the magnetic field by 
allowing field vector slippage but does not introduce additional stretching. For a 
rigorous proof of (13) see e.g. McKean (1969). However, to verify it non-rigorously 
expand B(x,  t + At ) and retain the necessary low-order terms to get 

B(x,  t + A t ) i  = ( J ( x ,  a,, x, At)tjB(a,, t )j) 

= B ( ~ , t ) ~ - ( u - v B ) , A t +  ( B . V U ) ~ A ~ + ( R ~ ’ V ~ B ) , A ~ .  

Spatial derivatives of J are not included because of the slippage property mentioned 
above. 

7. Numerical methods 
The primary method to be used for calculations will be the Wiener bundle solution 

described in the previous section. The method is well suited for several reasons. 
Firstly, as already mentioned, it reduces the problem to the integration of ODE’s. In 
particular, for the chaotic helical cell flow these ODE’s can be piecewise integrated, 
further reducing the problem to that of map iteration. Secondly, although the 
method requires that the magnetic field be calculated for each point separately, the 
value of the field at a single point is all that is necessary in order to calculate the field 
growth rate. Thirdly, the method allows study of higher magnetic Reynolds numbers 
than would otherwise be possible, as will be seen shortly. Fourthly, an explicit error 
estimation can be made. 

The Wiener bundle solution is also of interest because for small magnetic 
diffusivity (or large magnetic Reynolds number) it provides some insight into the 
smoothing role that diffusion plays in the fast dynamo process. To see this, regard 
the Wiener bundle as a cloud of noisy orbits, released from a point p ,  which travel 
backwards in time. As the noise causes them to  spread, the chaotic flow pulls the 
cloud into a long thin (O(R2))  sausage (Gilbert 1990, personal communication) along 
the stable manifold of the preimages of p (in backwards time the stable manifold is 
stretched exponentially). This suggests that the Wiener bundle solution for large R, 
can be well approximated by an average of the Cauchy solution over the stable 
manifold of p .  Noisy Wiener trajectories are approximated by nearby exact 
trajectories through the use of the shadowing principle. 

Shadowing can be defined as follows (Newhouse 1980). Letfbe a chaotic map (such 
as the time-one integration of a chaotic flow) and let ba}, -n < i < 0, be a noisy 
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Wiener trajectory off .  The trajectory bi} is said to be an 8 pseudo-orbit off if 
If(yi)-yi+ll < 8, -n < i < 0 .  An exact trajectory {x i } ,  - n  < i < 0, off is said to 6 
shadow { y , }  if Ixi-yil < 8, -n < i < 0.  The map f has the shadowing property if 
given any 8 > 0 small enough there exists a 6 such that any E pseudo-orbit can be 6 
shadowed by an exact one. That is, there is an exact trajectory near to any slightly 
noisy one. Note that n could be co and that S depends only on 8 and not on n. An 
example of a map with the shadowing property is a uniformly hyperbolic system like 
the Arnol’d cat map (Arnol’d & Avez 1968). 

The above situation occurs when a bundle of Wiener trajectories at small 
diffusivity is considered in a map with the shadowing property. For although the 
noise on a Wiener trajectory is Gaussian and hence not necessarily small, for 
asymptotically small diffusivity and finite time the probability of a given trajectory 
ever being perturbed at  a noise level larger than any fixed 8 goes to 0. Hence for small 
enough diffusion a given Wiener trajectory in a system with the shadowing property 
can with arbitrarily high certainty be shadowed arbitrarily accurately over finite 
times. In Klapper (1992) it is shown in the case of scalar advection that for 
asymptotically small diffusivity the Wiener bundle can be well approximated by a 
bundle of exact shadowing trajectories along the stable direction of p with Gaussian 
density where the variance u2 is given by 

A,-,, is the contracting factor off along the stable manifold off ’@). See the Appendix 
for the extension to vectors. Thus the Wiener bundle solution can be approximated 
asymptotically by the average of the Cauchy solution along the stable manifold ofp 
against the above Gaussian distribution for finite times at least. This method of 
approximating the exact solution (13) will henceforth be called the Gaussian 
averaging method. Since the stable direction is approximately the direction of small 
scales then for systems with the shadowing property diffusion has the effect of 
smoothing structure built up in the Cauchy solution over the lengthscale (T (which is 
independent of time). 

This paper is a numerical study of fast dynamo action and hence is concerned with 
finite times. From a theoretical point of view, definition (2) implicitly contains a 
double limit with t +  co followed by R,+ 00. Because of the singular nature of 
sending R, to infinity, the two limiting processes do not in general commute and thus 
the order of the double limit is crucial. For fixed time, B reduces trivially to the 
Cauchy solution when Rm+ 00. Thus in order that the Gaussian averaging method 
be a useful analytical tool it is important that it should still make sense for infinite 
time at fixed magnetic Reynolds number. The difficulty with this extension is that 
over infinite time any given Wiener trajectory will, with probability one, experience 
large noise events and hence will not be shadowable. This is only to be expected as 
for very long times there must be at  least the chance for diffusion to have long-range 
effects. This large noise problem can be overcome in a wide class of hyperbolic 
systems by approximating Wiener trajectories with almost shadowing exact 
trajectories, that is, trajectories that shadow for almost all of the time (Klapper 
1991). For the purposes of this paper, it is enough to note that, given the range of 
R, used, the times considered here, although finite, are on the one hand long enough 
for the Cauchy solution to develop small scales well below the diffusion length and 
on the other hand not so long that large noise events are likely. Thus it is expected 
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that the Gaussian averaging results reported give an accurate and non-trivial picture 
of local diffusivity effects. 

The Gaussian averaging method depends on the shadowing principle which does 
not hold for non-hyperbolic systems like the chaotic helical cell flow. However, 
numerical work of Grebogi et al. (1990) has produced evidence that shadowing is 
usually possible for long times in typical non-hyperbolic volume-preserving chaotic 
systems, and hence the method might be expected to provide a good approximation 
to the exact solution. Furthermore, when shadowing does break down, it does so for 
trajectories that pass through weakly stretched areas. Previous fast dynamo studies 
have indicated that averages of the Cauchy solution are dominated by the 
contributions of a relatively small number of strongly stretched trajectories (Finn & 
Ott 1988; Finn et al. 1991). So those trajectories for which shadowing breaks down 
may be unimportant in the final average. 

Thus, as long as the effects of shadowing breakdown are unimportant, diffusion 
may be thought of as Gaussian smoothing of small scales developed by the Cauchy 
solution. This is in agreement with an idea put forward previously by Finn & Ott  
(1988). They postulated that fast dynamo growth rates in chaotic systems can be 
measured by computing the flux growth rate ( l /T) ln  1s Bdxl of the Cauchy solution 
in a neighbourhood of a point p .  That is, they suggested that the growth rate of a 
chaotic dynamo at R, = a0 could be found by averaging the Cauchy solution in a 
small region against a uniform distribution. This method for calculating the dynamo 
growth rate will henceforth be called the flux growth method. Averaging over a small 
region should give the same answer as averaging only over the stable direction since 
the Cauchy solution is approximately constant in the strongly stretched unstable 
directions. Furthermore, when calculating exponential growth rates in chaotic 
systems it can be expected that, typically, averaging against a Gaussian density and 
averaging against a uniform density will give the same answer. Thus the two 
methods seem likely to agree and in fact the Gaussian averaging method then 
provides some verification for the flux growth method. However, it seems that in the 
same way as the variance (14) depends on R,, a finite R, is implicitly assumed in the 
flux growth method when the size of averaging region is chosen. Thus the growth rate 
calculated by the flux growth method may correspond more closely to a large but 
finite R, than to R, = a. Another way of saying this is that by averaging over a box 
of size I ,  field structures of size smaller than I are smoothed away. Also implicitly 
assumed by both the Gaussian averaging and flux growth methods is that the role 
of diffusion is limited to the smoothing of small scales. This bears dangerous 
similarities to preassuming fast dynamo action. Evidence shown here and other 
places (Bayly & Childress 1988; Finn & Ott  1990) supports the idea for chaotic 
systems ; nevertheless it is an assumption that should be treated with some care. The 
theory of Gaussian averaging may provide a clue to understanding when the role of 
diffusion becomes non-local. The method breaks down when shadowing does. Hence, 
as previously mentioned, noisy orbits that cannot be shadowed are of interest as they 
may indicate what non-local effects diffusion can have. 

As a further note, the fact that the averaging is done over a finite line segment for 
finite R, agrees with Finn & Ott’s proposal that the appropriate upper bound on field 
growth in a two-dimensional chaotic system is not the growth rate of an infinitesimal 
line segment (i.e. the largest Liapunov exponent) but the growth rate of a finite line 
segment, which they identify with the topological entropy. (The growth rate of a 
finite line segment is greater than or equal to that of an infinitesimal line segment, 
but otherwise the two are in general unrelated.) In fact, a slight generalization to 
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three dimensions is possible. In this case the Gaussian averaging method requires 
that the integration be taken over the stable manifold which again, for a volume- 
preserving system, suggests that topological entropy gives an upper bound to the 
growth rate (for a three-dimensional volume-preserving chaotic system, the 
topological entropy can be identified with the largest growth rate of lines and 
surfaces, see Yomdim 1987, Newhouse 1986), although the growth rate of fmite line 
segments is still the best bound. 

8. Numerical results 
The growth rate of the magnetic field in the chaotic helical cell flow I( was studied 

using the three methods described in the previous section. For the exact Wiener 
bundle solution the flow was alternated with pulses of diffusion, a technique 
suggested by Backus (1958) that has been used in several previous fast dynamo 
studies (e.g. Bayly & Childress 1988). With this method, fast periods of fluid flow 
without diffusion are alternated with periods of fluid stasis in which diffusion is 
allowed to act long enough to smooth fine-scaled magnetic structure. The principal 
reason for separating advection and diffusion here is to avoid technical difficulties 
associated with Wiener trajectories crossing and recrossing matching boundaries. It 
is, however, not strictly necessary to use this device. 

Further simplification is possible due to the choice of velocity field u. It has the 
significant advantage that it allows solutions of the form B = b(x,, t )  ePniKz, where 
xH = (2,~). In  this case the z-component of diffusion separates out and has the sole 
effect of reducing the field by a factor exp [ - (4n2k2/Rm) TI at each diffusion pulse, 
where T is the length of the pulse. This factor is included in the calculations (although 
with the parameters used it has no noticeable effect) and the problem is reduced to 
two dimensions. 

For the purpose of this study the perturbation parameter has been set to 8 = 0.1. 
Varying e at fixed R, would be interesting as well. Presumably a transition from the 
chaotic dynamo mechanism to the Roberts’ cell dynamo mechanism observed by 
Soward (1987) would occur when the sizes of the chaotic layer and diffusive boundary 
layers become comparable. Such a study lies beyond the scope of this paper, 
however. 

Figure 6 shows the growth rate of the magnetic field B at the point 

p = (-0.5, -0.005, 0) 

versus time for several magnetic Reynolds numbers. Results for other points in 
the chaotic region were consistent. In all cases the initial magnetic field is B,, = 
(e3.excz, 0,O) and shear parameter is a = 2. The calculations were done using the exact 
Wiener bundle method averaging over an ensemble of approximately 3 x lo6 particles 
for each R ,  (except for R, = lo6 where 6 x lo6 particles were used). The magnetic field 
at  p was calculated for increasing flow times but constant phase of 2.28. That is, the 
field was calculated for a series of different flows, each starting one time unit earlier 
than the previous one but each stopping at  t = 2.28. The times shown in figure 6 are 
the time lengths of these flows. The reason for doing this is to factor out the natural 
2n: frequency of the periodic perturbation by always finishing at the same phase, thus 
making it easier to see the underlying growth rate. In order to estimate errors the 
bundle was divided into sets of 100 noisy trajectories. Each set was then treated as 
a Gaussian variable, allowing a sample standard deviation to be calculated. Error 
bars, not included in figure 6, are small except for the last few points where they grow 
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(exponentially) to the level of approximately k0.02 (except for the curve R, = lo6 
for which the error bars are approximately twice as large). The growth rate of 
uncancelled field, that is, the growth rate of j IBI integrated over the Wiener bundle, 
settles to approximately 0.32, corresponding to a doubling time of about 2.2 time 
units. This growth rate is considerably larger than the magnetic field growth rate. 
Thus most of the magnetic field is cancelling and as time increases ISBl/jIq is an 
exponentially small quantity. Hence exponentially increasing resolution is required 
in time, severely limiting the total allowable evolution time. 

The results suggest that once enough time has passed so that the cloud of noisy 
Wiener trajectories is well mixed throughout the chaotic region the growth rate 
becomes independent of R,. The cloud will take a much longer time (t - R,) to 
spread to the island regions. However, contributions from the islands are expected 
to be small because of flux expulsion and weak stretching. To get an idea of the time 
T needed for the cloud to mix throughout the chaotic region note that equation (14) 
suggests that the Wiener bundle can be aFproximated by a line of particles through 
p of length proportional to (2R-,'x A&))2. As finite lines grow at a rate eALt where 
A, > 0 is the topological entropy, then the time T for the Wiener bundle to be 
stretched to a sausage of length I is approximately 
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Thus the time depends on In R,, in qualitative agreement with figure 6. It is this 
feature that counterbalances the fact that exponentially more points in time are 
needed to resolve the Wiener bundle solution, thus allowing the Wiener bundle 
method to be a useful technique for large magnetic Reynolds numbers. Figure 7 
shows, a t  various times, one spatial periodicity section of the flow containing 8000 
Wiener trajectories originating from the point p at R, = lo5. Figure 8 shows the 
same for R, = lo6. The positions of the trajectories are projected onto the plane 
z = 0. In the final frame of each figure the Wiener cloud is well mixed through the 
chaotic regions on both sides of the invariant separatrix x = 0, indicating that the 
field near p at least may have settled down to an eigenfunction. 

In figure 9 the growth rates calculated using all three methods are shown at 
R, = lo5 and lo6. The variances of the Gaussian and uniform distributions were 
chosen using (14). In the case R, = lo5 the three curves agree well until 
approximately T = 12. At that time a large number of Wiener trajectories enter an 
area of weak stretching (see figure 7 a )  indicating that the shadowing assumption 
may begin to break down at this diffusivity. Also many trajectories have jumped 
across the plane x = 0. However, the Gaussian method still gives fair agreement with 
the Wiener bundle method for later times. The flux growth method seems to require 
greater resolution, and the accuracy of that curve is suspect after t = 21. In the case 
R, = lo6 the results are similar but agreement is for somewhat longer times as might 
be expected from the larger magnetic Reynolds number. 

In  figure 10, the relative error (BG@, t ) - -B@,  t)l/lB@, t)l is plotted for R, = lo5 
and, where BG@, t ) is the value of the magnetic field at  p at time t calculated using 
the Gaussian method, and B@, t )  is the same using the Wiener bundle method. 
Excellent quantitative agreement is seen for early times despite strong dependence 
of both methods on the level of diffusivity. Furthermore although the two vectors are 
growing exponentially, they continue to remain within the same order of each other 
for later times. In figures 11 and 12, a short line segment centred at the point p was 
released and was allowed to advect backwards in time. The projection of the 
resulting line segment was then plotted. In figure 11 the length of the initial line 
segment was chosen to be four times the standard deviation used in the Gaussian 
method for R, = lo5, while the length of the initial line segment used for figure 12 
was chosen similarly except with R, = lo6. Comparing figures 11 and 12 with figures 
7 and 8 gives an indication of why the Gaussian averaging method approximates well 
the Wiener bundle method; the line segments in figures 11 and 12 are good 
representations of those parts of the clouds in figures 7 and 8 that do not cross a 
separatrix. As mentioned above the discrepancies between the Gaussian and Wiener 
bundle methods seen in figures 9 and 10 may be a result of Wiener trajectories that 
cannot be shadowed, such as those which cross separatrices. Because of flow 
symmetry and since initial magnetic fields used here are independent of x and y, 
differences in growth rate are not expected to remain significant over long times. 

9. Conclusions 
A helical cell flow has been studied for fast dynamo action. The flow contains an 

easily identifiable stretch-fold-shear mechanism arising from the occurrence of 
transverse heteroclinic points, a common feature of chaotic flows. The principal 
numerical method used, the Wiener bundle averaging technique, treats diffusion 
exactly a t  the expense of limiting evolution time. However, larger magnetic 
Reynolds numbers can be investigated than would have been possible using the 
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FIQURE 7. 8000 Wiener trajectories travelling backwards for times (a) t = 12, ( b )  t = 17, 
and (c) t = 22 from the point p = (0.5, -0.005, 0) at R, = 10'. 

available resources with a finite difference or spectral method such as those used in 
some previous studies of unsteady flows (Bayly & Childress 1988; Otani 1988). Clear 
evidence of dynamo action was observed over a range of magnetic Reynolds 
numbers. Furthermore, after an initial period during which he-scale structure was 
created, the magnetic field growth rate appeared to become independent of magnetic 
Reynolds number, suggests fast dynamo action. 

In order to better understand the diffusion process the Gaussian averaging method 
was introduced. The method, an approximation to the Wiener bundle average, is 
based on the approximation of noisy Wiener trajectories by exact ones through the 
use of the shadowing principle. It has the advantage of reducing the problem to the 
dimension of the stable manifold, which is one in the case of the chaotic helical cell 
flow. The Gaussian averaging method also offers insight into the role that diffusion 
plays in the smoothing of fine scales, supporting the idea that diffusion has no direct 
effect in the chaotic fast dynamo mechanism. Comparisons of the results from the 
exact Wiener bundle method and the approximate Gaussian average method showed 
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good quantitative agreement for moderate times despite the sensitivity of both 
methods to magnetic Reynolds number at early times. It is expected that 
quantitative agreement would continue to improve as R, is increased. 

Evidence has been presented suggesting that growth rates become independent of 
magnetic Reynolds number after short times and that diffusion has only the passive 
role of the smoothing of the fine-scale field created by chaotic stretching and folding. 
These are indicators of fast dynamo action. However, as there are known examples 
of flows in which growth rates decay extremely slowly with increasing magnetic 
Reynolds number, it will always be desirable to obtain analytic results. Without 
resorting to artifice, such results for chaotic systems like the chaotic helical cell flow 
seem difficult. 

The author is deeply indebted to Steve Childress and Andrew Gilbert for many 
hours of patient assistance. He would also like to thank Andrew Soward and Mike 
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Appendix. Shadowing and the chaotic advection of vectors 
The aim of this Appendix is to extend previously developed theory for the chaotic 

advection of scalars in the presence of small diffusion to the case of the vectors. It 
will be assumed that the chaotic system is an area-preserving two-dimensional map 
for which the shadowing principle holds, although the results hold for flows and 
higher dimensions as well. The idea is to substitute exact trajectories for Wiener 
trajectories and then relate the Wiener bundle solution to the Cauchy solution. 
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This procedure was previously applied in Klapper (1992) to the problem of the 
advection of scalars in hyperbolic flows and maps under the equation 

ae --+u.ve = gv2e 
at 

where 9 is the scalar diffusivity. There it was found that the Wiener bundle arriving 
at  a point p can be shadowed by a bundle of exact orbits arriving along the stable 
direction o f p  with density 

p( y) = (2na2)-fexp [ -y2/2a2] dy, (A 1) 

where y is the distance from p along the stable direction and the variance r2 is given 
by 

13 
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Here A(.+, is the contraction rate off i@) in the stable direction. The direction of 
small-scale structure is the adjoint stable direction (see Klapper 1992) which, while 
in general not the same as the stable direction, is never perpendicular to  it. Hence, 
for scalars at least, averaging over the Wiener bundle is equivalent to  averaging over 
the small scales created in the 9 = 0 problem. Vector advection is complicated by 
the fact that, unlike for scalars, the solution to the problem (3), where 9 = R-,l (i.e. 
the Cauchy solution) relies not only on the initial conditions but also on details of the 
trajectory history through dependence on the Jacobian. Hence i t  should be verified 
that, for finite time anyway, the average of the Cauchy solution over the above- 
described bundle of exact trajectories indeed is a good approximation to the average 
over thc Wiener bundle. That is, it needs to be shown that the history of a shadowing 
trajectory gives a good representation of the history of a Wiener trajectory. 

To accomplish this, let f: 52 + 52 be a map with the shadowing property. Given a 
point p consider an E pseudo-trajectory bi}, -n < i < 0, and a corresponding 8 
shadowing exact trajectory {x i } ,  -n < i < 0, such that yo = p .  Thus 

Ixi-yil < 6, -n d i d 0. 

Assume that the initial conditions B-, ( x )  = B ( x ,  n) are C o  and f is C2. Then B-, 
and Df, the Jacobian of J are uniformly continuous if 52 is compact. Let 
Df” (x- , ) ,  DC (y- , )  be the Jacobians off calculated along the trajectories {x i } ,  { y i }  
respectively. Thus, for 6 small and some constant C ,  depending on n, 

Df” ( x - . ~ )  = Dflx-,) Dflx-,) ... Dflx-,), 

Df,“(Y-,) = DflY-l)DflY-,)...DflY-,) 
= Df” ( x - ~ )  +A&, 

for a uniformly bounded IA I < C ,  since Df is uniformly continuous and {x,}  6 shadows 
bi}. Now since B-, is uniformly continuous then B-, (y-,) = B-, (xPn)  + b6 for some 
bounded b. Thus the magnetic fields contributed by the two trajectories are 

B(x,, 0) = Df” (x- , )  a, (x- , ) ,  

W y 0 ,  0) = (Df” (x- , )  + A 4  (B-,  (x- , )  + b6) 

= Df” (x- , )  B-, (x-,)  + O(6).  

Hence it can be expected that the trajectories {xi} and bz} will give similar 
contributions to  the final magnetic field as 9 and thus 8+0. Note that in our case 

As a final note it should be pointed out that the chaotic helical cell flow does not 
meet the conditions imposed because the flow Jacobian is not continuous across the 
planes 2 = 0.5+n and y = 0.5+m (see $4). However these are sets of measure 0 and 
hence as 9 vanishes they will have an increasingly negligible effect. Indeed the 
previous theorem could be extended to the case that Df is not continuous on a set of 
measure 0 as long as Df is bounded in a neighbourhood of that set. 

6 - O(E) - O ( R 2 ) .  

REFERENCES 

ARNOL’D, V. I. & AVEZ, A. 1968 Ergodic Problems of Classical Mechanics. New York: W. A. 
Benjamin. 

ARNOL’D, V. I., ZELDOVICH, YA. B., RUZMAIKIN, A. A. & SOKOLOV, D. D. 1981 A magnetic field in 
a stationary flow with stretching in Riemannian space. Zh. Eksp. Teor. Fiz. 81, 2052. (Trans]. 
SOV. Phys. JETP 81, 1083-1086. 



Fast dynamo action in chaotic helical cells 38 1 

BACKUS, G. 1958 A class of self-sustaining dissipative spherical dynamos. Ann. Phys. 4, 372477. 
BAYLY, B. J. 1986 Fast magnetic dynamos in chaotic flows. Phys. Rev. Lett. 57, 28W2803. 
BAYLY, B. t CHILDRESS, S. 1988 Construction of fast dynamos using unsteady flows and maps in 

three dimensions. Geophys. Astrophys. Fluid Dyn. 44, 207-240. 
BAYLY, B. J. t CHILDRESS, S. 1989 Unsteady dynamo effects at large magnetic Reynolds 

numbers. Geophys. Astrophys. Fluid Dyn. 49, 23-43. 
CHORIN, J. C. 1973 Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785-796. 
DRUMMOND, I. T., DUANE, S. t HORQAN, R. R. 1984 Scalar diffusion in simulated helical 

FINN, J. M., HANSON, J. D., KAN, I. t OTT, E. 1989 Do steady fast magnetic dynamos exist ? 

FINN, J. M., HANSON, J. D., KAN, I. t OTT, E. 1991 Steady fast dynamo flows. Phys. Fluids B3, 

FINN, J. M. t OTT, E. 1988 Chaotic flows and fast magnetic dynamos. Phys. Fluids 31,2992-301 1. 
FINN, J. M. t OTT, E. 1990 The fast kinematic magnetic dynamo and the dissipationless limit 

GILBERT, A. D. 1988 Fast dynamo action in the Ponomerenko dynamo. Geophys. Astrophys. Fluid 

GILBERT, A. D. 1991 Fast dynamo action in a steady flow. Nature 350, 483485. 
GILBERT, A. D. 1992 Magnetic field evolution in steady chaotic flows. Phil. Trans. R .  SOC. Lond. 

(in press). 
GILBERT, A. D. t CHILDRESS, S. 1990 Evidence for fast dynamo action in a chaotic web. Phys. 

Rev. Lett. 65, 2133-2136. 
GREBOGI, C., HAMMEL, S. M., YORKE, J. A. t SAUER, T. 1990 Shadowing of physical trajectories 

in chaotic dynamics: containment and refinement. Phys. Rev. Lett. 65, 1527-1530. 
GUCKENHEIMER, J. t HOLMES, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations 

of Vector Fields. Springer. 
KLAPPER, I. 1991 Fast magnetic dynamos. Dissertation, Courant Institute of Mathematical 

Sciences. 
KLAPPER, I. 1992 Shadowing and the role of small diffusivity in the chaotic advection of scalars 

Phys. Fluids A (to appear). 
KRAICHNAN, R. H. 1976 Diffusion of passive-scalar and magnetic fields by helical turbulence. 

J .  Fluid Mech. 77, 753-768. 
LICHTENBERQ, A. J. t LIEBERMAN, M. A. 1983 Regular and Stochastic Motion. Springer. 
MCKEAN, H. P. 1969 Stochastic Integrals. Academic. 
MOLCHANOV, S. A., RUZMAIKIN, A. A. t SOKOLOV, D. D. 1985 Kinematic dynamo action in a 

NEWHOUSE, S. 1980 Lectures on dynamical systems. In Dynamical Systems. (ed. J. Coates t S. 

NEWHOUSE, S. 1986 In  The Physics of Phase Space. (ed. Y. S. Kim t W. W. Zachary), pp. 2-8. 

OTANI, N. J.  1988 Computer simulation of fast kinematic dynamos. E.O.S. Trans. Am. Geophys. 

ROBERTS, G. 0.  1972 Dynamo action of fluid motions with two-dimensional periodicity. Phil. 

ROBERTS, P. H. t SOWARD, A. M. 1992 Dynamo theory. Ann. Rev. Fluid Mech. (to appear). 
SOWARD, A. M. 1987 Fast dynamo action in a steady flow. J. Fluid Mech. 180, 267-295. 
VAINSHTEIN, S. I. t ZELDOVICH, YA. B. 1972 Origin of magnetic fields in astrophysics. Sov. Phys. 

VISHIK, M. M. 1989 Magnetic field generation by the motion of a highly conducting fluid. Geophys. 

YOMDIN, Y. 1987 Volume growth and entropy. Israel J. Maths 57, 285-300. 

turbulence with molecular diffusivity. J. Fluid Mech. 138, 75-91. 

Phys. Rev. Lett. 62, 2965-2968. 

1250-1269. 

Phys. Fluids B2, 91G926. 

Dyn. 44, 214-258. 

random flow. Usp. Fiz. Nauk. 145, 593. (Transl. Sov. Phys. Usp. 28, 307-326). 

Helgason). CIME Lectures. Boston : Birkhauser. 

Springer. 

Union 69, No. 44, Abstract Sh51-15, p. 1366. 

Trans. R .  SOC. Lond. A271, 411454. 

Usp. 15, 15S172. 

Astrophys. Fluid Dyn. 48, 151-167. 

13-2 


